Post by OldGreenVulture on Dec 17, 2019 4:39:00 GMT
Western (European) Honey Bee - Apis mellifera.
Scientific classification
Kingdom:Animalia
Phylum:Arthropoda
Class:Insecta
Order:Hymenoptera
Family:Apidae
Genus:Apis
Species:Apis mellifera
The western honey bee or European honey bee (Apis mellifera) is a species of honey bee. The genus name Apis is Latin for "bee", and mellifera means "honey-bearing". As of October 28, 2006, the Honey Bee Genome Sequencing Consortium fully sequenced and analyzed the genome of Apis mellifera. Since 2007, attention has been devoted to colony collapse disorder, a decline in European honey bee colonies in a number of regions.
Geographic Distribution
The western honey bee is native to Europe, Asia and Africa. During the early 1600s it was introduced to North America, with other European subspecies introduced two centuries later. Since then, it has spread throughout the Americas.
Western honey bees evolved into geographic races as they spread from Africa into Eurasia, and 28 subspecies based on these geographic variations are recognized. All races are cross-fertile, although reproductive adaptations may make interbreeding unlikely. The subspecies are divided into four major branches, based on work by Ruttner and confirmed by mitochondrial DNA analysis. African subspecies belong to branch A, northwestern European subspecies branch M, southwestern European subspecies branch C and Mideastern subspecies branch O. These subspecies are listed and grouped in the sidebar. Regions with local variations may be identified as subspecies in the future; A. m. pomonella, from the Tian Shan, would be included in the Mideastern subspecies branch.
Geographic isolation led to adaptation as honey bees spread after the last ice age. These adaptations include brood cycles synchronized to the blooming period of local flora, forming a winter cluster in colder climates, migratory swarming in Africa and enhanced foraging behavior in desert areas.
Biology & Reproduction
In the temperate zone honey bees survive winter as a colony, and the queen begins egg-laying in mid- to late winter in preparation for spring (probably triggered by day length). The only fertile female, she lays the eggs from which all the other bees are produced. Except for a brief periods (when she may fly to mate with drones or leave in later life with a swarm to establish a new colony), the queen rarely leaves the hive after the larvae have become bees. She deposits each egg in a cell prepared by worker bees. The egg hatches into a small larva fed by "nurse" bees (worker bees who maintain the interior of the colony). After about a week, the larva is sealed in its cell by the nurse bees and begins its pupal stage. After another week, it emerges as an adult bee.
For the first ten days of their lives, female worker bees clean the hive and feed the larvae. After this, they begin building comb cells. On days 16 through 20, workers receive nectar and pollen from older workers and store it. After the 20th day, a worker leaves the hive and spends the remainder of its life as a forager. The average population of a healthy hive in midsummer may be as high as 40,000 to 80,000 bees. The larvae and pupae in a frame of honeycomb are known as "frames of brood", and are sold (with adhering bees) to start new beehives.
Workers and queens are fed royal jelly during the first three days of their larval stage. Workers are then switched to a diet of pollen and nectar (or diluted honey), while queens will continue to receive royal jelly (which helps large, sexually developed larvae reach the pupal stage more quickly). Queen breeders consider good nutrition during the larval stage critically important for queen quality, with good genetics and sufficient mating contributing factors. During the larval and pupal stages, parasites may damage (or destroy) the pupa or larva.
Queens are not raised in the typical horizontal brood cells of the honeycomb. A queen cell is larger and oriented vertically. If workers sense that an old queen is weakening, they produce emergency cells (known as supersedure cells) made from cells with eggs or young larvae and which protrude from the comb. When the queen finishes her larval feeding and pupates, she moves into a head-downward position and later chews her way out of the cell. At pupation, workers cap (seal) the cell. Shortly before emerging from their cells, young queens may often be heard "piping". The queen makes this sound to evaluate her space, and piping seems to calm worker bees.
Although worker bees are usually infertile females, when some subspecies are stressed they may lay fertile eggs. Since workers are not fully sexually developed, they do not mate with drones. Fertile eggs would be haploid (having only the genetic contribution of their mother), and these haploid eggs would always develop into drones. Worker bees secrete the wax used to build the hive, clean, maintain and guard it, raise the young and forage for nectar and pollen.
Worker honey bees have a modified ovipositor, a stinger, with which they defend the hive; unlike bees of any other genus and the queens of their own species, this stinger is barbed. Contrary to popular belief, a bee does not always die soon after stinging; this misconception is based on the fact that a bee will usually die after stinging a human or other mammal. The stinger and its venom sac, with musculature and a ganglion allowing them to continue delivering venom after they are detached, are designed to pull free of the body when they lodge. This apparatus (including barbs on the stinger) is thought to have evolved in response to predation by vertebrates, since the barbs do not function (and the stinger apparatus does not detach) unless the stinger is embedded in elastic material. The barbs do not always "catch", so a bee may occasionally pull its stinger free and fly off unharmed (or sting again).
Drones
Drones are the colony's male bees. Since they do not have ovipositors, they do not have stingers. Drone honey bees do not forage for nectar or pollen. The primary purpose of a drone is to fertilize a new queen. Many drones will mate with a given queen in flight; each will die immediately after mating, since the process of insemination requires a lethally convulsive effort. Drone honey bees are haploid (single, unpaired chromosomes) in their genetic structure, and are descended only from their mother (the queen). In temperate regions drones are generally expelled from the hive before winter, dying of cold and starvation since they cannot forage, produce honey or care for themselves. There has been research into the role A. mellifera drones play in thermoregulation within the hive. Given their larger size (1.5x), drones may play a significant role. Drones are typically located near the center of hive clusters for unclear reasons. It is postulated that it is to maintain sperm viability, which drops off at cooler temperatures. Another possible explanation posed, is that a more central location allows drones to contribute to warmth, since at temperatures below 25C their ability to contribute declines.
Life Expectancy
Although the average lifespan of a queen in most subspecies is three to five years, reports from the German-European black bee subspecies previously used for beekeeping indicate that a queen can live up to eight years. Because a queen's store of sperm is depleted near the end of her life, she begins laying more unfertilized eggs; for this reason, beekeepers often replace queens every year or two.
The lifespan of workers varies considerably over the year in regions with long winters. Workers born in spring and summer will work hard, living only a few weeks, but those born in autumn will remain inside for several months as the colony clusters. On average during the year, about one percent of a colony's worker bees die naturally per day.[7] Except for the queen, all of a colony's workers are replaced about every four months.
Honey Production
Bees produce honey by collecting nectar, a clear liquid consisting of nearly 80 percent water and complex sugars. The collecting bees store the nectar in a second stomach and return to the hive, where worker bees remove the nectar. The worker bees digest the raw nectar for about 30 minutes, using enzymes to break down the complex sugars into simpler ones. Raw honey is then spread in empty honeycomb cells to dry, reducing its water content to less than 20 percent. When nectar is being processed, honey bees create a draft through the hive by fanning with their wings. When the honey has dried, the honeycomb cells are sealed (capped) with wax to preserve it.
When a hive detects smoke, many bees become nonaggressive; this is thought to be a defense mechanism. Wild colonies generally live in hollow trees; when they detect smoke, they are thought to prepare to evacuate from a forest fire with as much food as they can. To do this, they go to the nearest honey-storage cells and gorge on honey. In this state they are docile, since defending against predation is less important than saving as much food as possible.
Thermoregulation
The honey bee needs an internal body temperature of 35 °C (95 °F) to fly; this temperature is maintained in the nest to develop the brood, and is the optimal temperature for the creation of wax. The temperature on the periphery of the cluster varies with outside air temperature, and the winter cluster's internal temperature may be as low as 20–22 °C (68–72 °F).
Honey bees can forage over a 30 °C (54 °F) air-temperature range because of behavioral and physiological mechanisms for regulating the temperature of their flight muscles. From low to high air temperatures, the mechanisms are: shivering before flight, and stopping flight for additional shivering; passive body-temperature regulation based on work, and evaporative cooling from regurgitated honey-sac contents. Body temperatures differ, depending on caste and expected foraging rewards.
The optimal air temperature for foraging is 22–25 °C (72–77 °F). During flight, the bee's relatively large flight muscles create heat which must dissipate. The honey bee uses evaporative cooling to release heat through its mouth. Under hot conditions, heat from the thorax is dissipated through the head; the bee regurgitates a droplet of warm internal fluid — a "honeycrop droplet" – which reduces the temperature of its head by 10 °C (18 °F).
Below 7–10 °C (45–50 °F) bees are immobile, and above 38 °C (100 °F) their activity slows. Honey bees can tolerate temperatures up to 50 °C (122 °F) for short periods.
Queens
Periodically, the colony determines that a new queen is needed. There are three general causes:
The hive is filled with honey, leaving little room for new eggs. This will trigger a swarm, where the old queen will take about half the worker bees to found a new colony and leave the new queen with the other half of the workers to continue the old one.
The old queen begins to fail, which is thought to be demonstrated by a decrease in queen pheromones throughout the hive. This is known as supersedure, and at the end of the supersedure the old queen is generally killed.
The old queen dies suddenly, a situation known as emergency supersedure. The worker bees find several eggs (or larvae) of the appropriate age range and attempt to develop them into queens. Emergency supersedure can generally be recognized because new queen cells are built out from comb cells, instead of hanging from the bottom of a frame.
Regardless of the trigger, workers develop the larvae into queens by continuing to feed them royal jelly (which triggers extended pupal development).
When the virgin queen emerged, she was thought to seek out other queen cells and sting the infant queens within; should two queens emerge simultaneously, they were thought to fight to the death. However, recent research has indicated as many as 10 percent of Apis mellifera colonies may maintain two queens. Although the mechanism by which this occurs is not yet known, it has reportedly occurred more frequently in some South African subspecies. The queen asserts control over the worker bees by releasing a complex suite of pheromones known as queen scent.
After several days of orientation in and around the hive, the young queen flies to a drone congregation point – a site near a clearing and generally about 30 feet (9.1 m) above the ground – where drones from different hives congregate. They detect the presence of a queen in their congregation area by her smell, find her by sight and mate with her in midair; drones can be induced to mate with "dummy" queens with the queen pheromone. A queen will mate multiple times, and may leave to mate several days in a row (weather permitting) until her spermatheca is full.
The queen lays all the eggs in a healthy colony. The number and pace of egg-laying is controlled by weather, resource availability and specific racial characteristics. Queens generally begin to slow egg-laying in the early fall, and may stop during the winter. Egg-laying generally resumes in late winter when the days lengthen, peaking in the spring. At the height of the season, the queen may lay over 2,500 eggs per day (more than her body mass).
She fertilizes each egg (with stored sperm from the spermatheca) as it is laid in a worker-sized cell. Eggs laid in drone-sized (larger) cells are left unfertilized; these unfertilized eggs, with half as many genes as queen or worker eggs, develop into drones.
From Carnivora.
carnivora.net/western-european-honey-bee-apis-mellifera-t1257.html
Scientific classification
Kingdom:Animalia
Phylum:Arthropoda
Class:Insecta
Order:Hymenoptera
Family:Apidae
Genus:Apis
Species:Apis mellifera
The western honey bee or European honey bee (Apis mellifera) is a species of honey bee. The genus name Apis is Latin for "bee", and mellifera means "honey-bearing". As of October 28, 2006, the Honey Bee Genome Sequencing Consortium fully sequenced and analyzed the genome of Apis mellifera. Since 2007, attention has been devoted to colony collapse disorder, a decline in European honey bee colonies in a number of regions.
Geographic Distribution
The western honey bee is native to Europe, Asia and Africa. During the early 1600s it was introduced to North America, with other European subspecies introduced two centuries later. Since then, it has spread throughout the Americas.
Western honey bees evolved into geographic races as they spread from Africa into Eurasia, and 28 subspecies based on these geographic variations are recognized. All races are cross-fertile, although reproductive adaptations may make interbreeding unlikely. The subspecies are divided into four major branches, based on work by Ruttner and confirmed by mitochondrial DNA analysis. African subspecies belong to branch A, northwestern European subspecies branch M, southwestern European subspecies branch C and Mideastern subspecies branch O. These subspecies are listed and grouped in the sidebar. Regions with local variations may be identified as subspecies in the future; A. m. pomonella, from the Tian Shan, would be included in the Mideastern subspecies branch.
Geographic isolation led to adaptation as honey bees spread after the last ice age. These adaptations include brood cycles synchronized to the blooming period of local flora, forming a winter cluster in colder climates, migratory swarming in Africa and enhanced foraging behavior in desert areas.
Biology & Reproduction
In the temperate zone honey bees survive winter as a colony, and the queen begins egg-laying in mid- to late winter in preparation for spring (probably triggered by day length). The only fertile female, she lays the eggs from which all the other bees are produced. Except for a brief periods (when she may fly to mate with drones or leave in later life with a swarm to establish a new colony), the queen rarely leaves the hive after the larvae have become bees. She deposits each egg in a cell prepared by worker bees. The egg hatches into a small larva fed by "nurse" bees (worker bees who maintain the interior of the colony). After about a week, the larva is sealed in its cell by the nurse bees and begins its pupal stage. After another week, it emerges as an adult bee.
For the first ten days of their lives, female worker bees clean the hive and feed the larvae. After this, they begin building comb cells. On days 16 through 20, workers receive nectar and pollen from older workers and store it. After the 20th day, a worker leaves the hive and spends the remainder of its life as a forager. The average population of a healthy hive in midsummer may be as high as 40,000 to 80,000 bees. The larvae and pupae in a frame of honeycomb are known as "frames of brood", and are sold (with adhering bees) to start new beehives.
Workers and queens are fed royal jelly during the first three days of their larval stage. Workers are then switched to a diet of pollen and nectar (or diluted honey), while queens will continue to receive royal jelly (which helps large, sexually developed larvae reach the pupal stage more quickly). Queen breeders consider good nutrition during the larval stage critically important for queen quality, with good genetics and sufficient mating contributing factors. During the larval and pupal stages, parasites may damage (or destroy) the pupa or larva.
Queens are not raised in the typical horizontal brood cells of the honeycomb. A queen cell is larger and oriented vertically. If workers sense that an old queen is weakening, they produce emergency cells (known as supersedure cells) made from cells with eggs or young larvae and which protrude from the comb. When the queen finishes her larval feeding and pupates, she moves into a head-downward position and later chews her way out of the cell. At pupation, workers cap (seal) the cell. Shortly before emerging from their cells, young queens may often be heard "piping". The queen makes this sound to evaluate her space, and piping seems to calm worker bees.
Although worker bees are usually infertile females, when some subspecies are stressed they may lay fertile eggs. Since workers are not fully sexually developed, they do not mate with drones. Fertile eggs would be haploid (having only the genetic contribution of their mother), and these haploid eggs would always develop into drones. Worker bees secrete the wax used to build the hive, clean, maintain and guard it, raise the young and forage for nectar and pollen.
Worker honey bees have a modified ovipositor, a stinger, with which they defend the hive; unlike bees of any other genus and the queens of their own species, this stinger is barbed. Contrary to popular belief, a bee does not always die soon after stinging; this misconception is based on the fact that a bee will usually die after stinging a human or other mammal. The stinger and its venom sac, with musculature and a ganglion allowing them to continue delivering venom after they are detached, are designed to pull free of the body when they lodge. This apparatus (including barbs on the stinger) is thought to have evolved in response to predation by vertebrates, since the barbs do not function (and the stinger apparatus does not detach) unless the stinger is embedded in elastic material. The barbs do not always "catch", so a bee may occasionally pull its stinger free and fly off unharmed (or sting again).
Drones
Drones are the colony's male bees. Since they do not have ovipositors, they do not have stingers. Drone honey bees do not forage for nectar or pollen. The primary purpose of a drone is to fertilize a new queen. Many drones will mate with a given queen in flight; each will die immediately after mating, since the process of insemination requires a lethally convulsive effort. Drone honey bees are haploid (single, unpaired chromosomes) in their genetic structure, and are descended only from their mother (the queen). In temperate regions drones are generally expelled from the hive before winter, dying of cold and starvation since they cannot forage, produce honey or care for themselves. There has been research into the role A. mellifera drones play in thermoregulation within the hive. Given their larger size (1.5x), drones may play a significant role. Drones are typically located near the center of hive clusters for unclear reasons. It is postulated that it is to maintain sperm viability, which drops off at cooler temperatures. Another possible explanation posed, is that a more central location allows drones to contribute to warmth, since at temperatures below 25C their ability to contribute declines.
Life Expectancy
Although the average lifespan of a queen in most subspecies is three to five years, reports from the German-European black bee subspecies previously used for beekeeping indicate that a queen can live up to eight years. Because a queen's store of sperm is depleted near the end of her life, she begins laying more unfertilized eggs; for this reason, beekeepers often replace queens every year or two.
The lifespan of workers varies considerably over the year in regions with long winters. Workers born in spring and summer will work hard, living only a few weeks, but those born in autumn will remain inside for several months as the colony clusters. On average during the year, about one percent of a colony's worker bees die naturally per day.[7] Except for the queen, all of a colony's workers are replaced about every four months.
Honey Production
Bees produce honey by collecting nectar, a clear liquid consisting of nearly 80 percent water and complex sugars. The collecting bees store the nectar in a second stomach and return to the hive, where worker bees remove the nectar. The worker bees digest the raw nectar for about 30 minutes, using enzymes to break down the complex sugars into simpler ones. Raw honey is then spread in empty honeycomb cells to dry, reducing its water content to less than 20 percent. When nectar is being processed, honey bees create a draft through the hive by fanning with their wings. When the honey has dried, the honeycomb cells are sealed (capped) with wax to preserve it.
When a hive detects smoke, many bees become nonaggressive; this is thought to be a defense mechanism. Wild colonies generally live in hollow trees; when they detect smoke, they are thought to prepare to evacuate from a forest fire with as much food as they can. To do this, they go to the nearest honey-storage cells and gorge on honey. In this state they are docile, since defending against predation is less important than saving as much food as possible.
Thermoregulation
The honey bee needs an internal body temperature of 35 °C (95 °F) to fly; this temperature is maintained in the nest to develop the brood, and is the optimal temperature for the creation of wax. The temperature on the periphery of the cluster varies with outside air temperature, and the winter cluster's internal temperature may be as low as 20–22 °C (68–72 °F).
Honey bees can forage over a 30 °C (54 °F) air-temperature range because of behavioral and physiological mechanisms for regulating the temperature of their flight muscles. From low to high air temperatures, the mechanisms are: shivering before flight, and stopping flight for additional shivering; passive body-temperature regulation based on work, and evaporative cooling from regurgitated honey-sac contents. Body temperatures differ, depending on caste and expected foraging rewards.
The optimal air temperature for foraging is 22–25 °C (72–77 °F). During flight, the bee's relatively large flight muscles create heat which must dissipate. The honey bee uses evaporative cooling to release heat through its mouth. Under hot conditions, heat from the thorax is dissipated through the head; the bee regurgitates a droplet of warm internal fluid — a "honeycrop droplet" – which reduces the temperature of its head by 10 °C (18 °F).
Below 7–10 °C (45–50 °F) bees are immobile, and above 38 °C (100 °F) their activity slows. Honey bees can tolerate temperatures up to 50 °C (122 °F) for short periods.
Queens
Periodically, the colony determines that a new queen is needed. There are three general causes:
The hive is filled with honey, leaving little room for new eggs. This will trigger a swarm, where the old queen will take about half the worker bees to found a new colony and leave the new queen with the other half of the workers to continue the old one.
The old queen begins to fail, which is thought to be demonstrated by a decrease in queen pheromones throughout the hive. This is known as supersedure, and at the end of the supersedure the old queen is generally killed.
The old queen dies suddenly, a situation known as emergency supersedure. The worker bees find several eggs (or larvae) of the appropriate age range and attempt to develop them into queens. Emergency supersedure can generally be recognized because new queen cells are built out from comb cells, instead of hanging from the bottom of a frame.
Regardless of the trigger, workers develop the larvae into queens by continuing to feed them royal jelly (which triggers extended pupal development).
When the virgin queen emerged, she was thought to seek out other queen cells and sting the infant queens within; should two queens emerge simultaneously, they were thought to fight to the death. However, recent research has indicated as many as 10 percent of Apis mellifera colonies may maintain two queens. Although the mechanism by which this occurs is not yet known, it has reportedly occurred more frequently in some South African subspecies. The queen asserts control over the worker bees by releasing a complex suite of pheromones known as queen scent.
After several days of orientation in and around the hive, the young queen flies to a drone congregation point – a site near a clearing and generally about 30 feet (9.1 m) above the ground – where drones from different hives congregate. They detect the presence of a queen in their congregation area by her smell, find her by sight and mate with her in midair; drones can be induced to mate with "dummy" queens with the queen pheromone. A queen will mate multiple times, and may leave to mate several days in a row (weather permitting) until her spermatheca is full.
The queen lays all the eggs in a healthy colony. The number and pace of egg-laying is controlled by weather, resource availability and specific racial characteristics. Queens generally begin to slow egg-laying in the early fall, and may stop during the winter. Egg-laying generally resumes in late winter when the days lengthen, peaking in the spring. At the height of the season, the queen may lay over 2,500 eggs per day (more than her body mass).
She fertilizes each egg (with stored sperm from the spermatheca) as it is laid in a worker-sized cell. Eggs laid in drone-sized (larger) cells are left unfertilized; these unfertilized eggs, with half as many genes as queen or worker eggs, develop into drones.
From Carnivora.
carnivora.net/western-european-honey-bee-apis-mellifera-t1257.html